October 8, 2010

ekuivalen

apakah (P --> Q) -->R dan p --> (q --> r) ekuivalen?
kita buktikan dengan tabel kebenaran
dari hasil tabel, maka kedua pernyataan tidak ekuivalen.
sekian dari saya hari ini.

October 6, 2010

Bilangan -bilangan

bilangan biner : 0,1
bilangan octal : 1,2,3,4,5,6,7
bilangan decimal : 1,2,3,4,5,6,7,8,9
bilangan heksadecimal : 1,2,3,4,5,6,7,8,9,a,b,c,d,e,f

bilangan biner


ada soal- soal bilangan biner.
1. 23410 = ….8 =….16
2. 1925410 =….8 =….16
3. 5256718 = …..16 = …..10
4. FE25D16 = …..8 = ……10
Jawaban
1. 3528 = EA16
2. 454668 = 4B3616
3. 2ABB916 = 175.03310
4. 37611358 = 1.040.98910
Caranya kita ambil dari nomor satu saja yang tidak begitu rumit.
Pertama kita harus jadikan bilangan basis sepuluh itu menjadi bilangan biner dengan cara dibagi dengan angka dua, lalu sisanya ditulis di sebelah kanan. Nanti hasilnya yang dibaca adalah yang disebelah kanan (sisanya). Cara melihat jawabannya diurutkan dari bawah ke atas. Jadi jawabannya adalah 111010102.

Lalu baru jadikan bilangan basis 8 dan basis 16.
cara menjadikan basis 8 adalah dari bilangan basis 2, dibagi menjadi 3- 3 bagian dari kanan.
jadi seperti ini : (11) (101) (010)
lalu dihitung masing- masing bagian nilainya
(11) = 2^0 * 1 + 2^1 * 1 = 3
(101) = 2^0 * 1 + 2^1 * 0 + 2^3 * 1 = 5
(010) = 2^0 * 0 + 2^1 * 1 + 2^3 * 0 = 2
maka jawabannya basis 8 adalah 3528
Untuk basis 16, caranya dengan membagi- bagi menjadi 4 bagian dari kanan.
jadi seperti ini : (1110)(1010).
seperti sebelumnya hitung nilai 2 bagiannya.
(1110) = 2^0 * 0 + 2^1 * 1 + 2^2 * 1 + 2^3 * 1 = 14
(1010) = 2^0 * 0 + 2^1 * 1 + 2^2 * 0 + 2^3 * 1 = 10
maka jawabannya adalah EA16
sisanya dikerjakan dengan cara yang sama.